- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abusleme, Angel (2)
-
Adam, Thomas (2)
-
Ahmad, Shakeel (2)
-
Ahmed, Rizwan (2)
-
Aiello, Sebastiano (2)
-
An, Fengpeng (2)
-
An, Qi (2)
-
Andronico, Giuseppe (2)
-
Anfimov, Nikolay (2)
-
Antonelli, Vito (2)
-
Antoshkina, Tatiana (2)
-
Auguste, Didier (2)
-
Bai, Weidong (2)
-
Balashov, Nikita (2)
-
Baldini, Wander (2)
-
Barresi, Andrea (2)
-
Basilico, Davide (2)
-
Baussan, Eric (2)
-
Bellato, Marco (2)
-
Beretta, Marco (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We explore the decay of bound neutrons in the JUNO liquid scintillator detector into invisible particles (e.g.,$$n\rightarrow 3 \nu $$ or$$nn \rightarrow 2 \nu $$ ), which do not produce an observable signal. The invisible decay includes two decay modes:$$ n \rightarrow { inv} $$ and$$ nn \rightarrow { inv} $$ . The invisible decays ofs-shell neutrons in$$^{12}\textrm{C}$$ will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino$${\bar{\nu }}_e$$ , natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are$$\tau /B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, \textrm{years}$$ and$$\tau /B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, \textrm{years}$$ .more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abusleme, Angel; Adam, Thomas; Ahmad, Shakeel; Ahmed, Rizwan; Aiello, Sebastiano; Akram, Muhammad; Aleem, Abid; An, Fengpeng; An, Qi; Andronico, Giuseppe; et al (, Journal of Cosmology and Astroparticle Physics)Abstract The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China.The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage.Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios.The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN.more » « less
An official website of the United States government
